Пятница, 26.04.2024, 09:37
Приветствую Вас Гость | RSS

Программирование на ЯВУ

Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Лекция 7.

Присваивание

В большинстве языков программирования присваивание - это оператор, а не операция. В языке C# присваивание унаследовало многие особенности присваивания языка C++. В C# оно толкуется как операция, используемая в выражениях. Однако в большинстве случаев присваивание следует рассматривать и использовать как обычный оператор.

Возьмем полезный случай реального использования присваивания как операции. В ситуации, называемой множественным присваиванием, списку переменных присваивается одно и тоже значение. Вот пример:

/// <summary>
/// анализ присваивания
/// </summary>
public void Assign()
{
 double x,y,z,w =1, u =7, v= 5;
 x = y = z = w =(u+v+w)/(u-v-w);
}//Assign

По мере изложения в метод Assign будут добавляться фрагменты кода, связанные с рассматриваемой темой присваивания.

О семантике присваивания говорилось уже достаточно много. Но следует внести еще некоторые уточнения. Правильно построенное выражение присваивания состоит из левой и правой части. Левая часть - это список переменных, в котором знак равенства выступает в качестве разделителя. Правая часть - это выражение. Выражение правой части вычисляется, при необходимости приводится к типу переменных левой части, после чего все переменные левой части получают значение вычисленного выражения. Последние действия можно рассматривать как побочный эффект операции присваивания. Заметьте, все переменные в списке левой части должны иметь один тип или неявно приводиться к одному типу. Операция присваивания выполняется справа налево, поэтому вначале значение выражения получит самая правая переменная списка левой части, при этом значение самого выражения не меняется. Затем значение получает следующая справа по списку переменная - и так до тех пор, пока не будет достигнут конец списка. Так что реально можно говорить об одновременном присваивании, в котором все переменные списка получают одно и то же значение. В нашем примере, несмотря на то, что переменная w первой получит значение, а выражение в правой части зависит от w, все переменные будут иметь значение 13.0. Рассмотрим еще один фрагмент кода:

bool b;
x=5; y=6;
//b= x=y;
//if (x=y) z=1;else z=-1;

В программе на языке C++ можно было снять комментарии с операторов, и этот фрагмент кода компилировался и выполнялся бы без ошибок. Другое дело, что результат мог быть некорректен, поскольку, вероятнее всего, операция присваивания "x=y" написана по ошибке и ее следует заменить операцией эквивалентности "x==y". В языке C# оба закомментированных оператора, к счастью, приведут к ошибке трансляции, поскольку результат присваивания имеет тип double, для которого нет неявного преобразования в тип bool. На C# такая программа будет выполняться, только если x и y будут иметь тип bool, но в этом случае, возможно, применение операции присваивания имеет смысл. С типами double корректная программа на C# может быть такой:

x =y;
b= (y!=0);
if(y!=0) z=1; else z = -1;

В программе появился лишний оператор, но исчезла двусмысленность, порождаемая операцией присваивания.

Специальные случаи присваивания

В языке C++ для двух частных случаев присваивания предложен отдельный синтаксис. Язык C# наследовал эти полезные свойства. Для присваиваний вида "x=x+1", в которых переменная увеличивается или уменьшается на единицу, используются специальные префиксные и постфиксные операции "++" и "--". Другой важный частный случай - это присваивания вида:

X = X <operator> (expression)

Для таких присваиваний используется краткая форма записи:

X <operator>= expression

В качестве операции разрешается использовать арифметические, логические (побитовые) операции и операции сдвига языка C#. Семантика такого присваивания достаточно очевидна, и я ограничусь простым примером:

x += u+v; y /=(u-v);
b &= (x<y);

Однако и здесь есть один подводный камень, когда x= x+a не эквивалентно x +=a. Рассмотрим следующий пример:

byte b3 = 21;
b3 +=1; //Это допустимо
//b3 = b3+1; //А это недопустимо:результат типа int

Закомментированный оператор приведет к ошибке компиляции, поскольку правая часть имеет тип int, а неявное преобразование к типу byte отсутствует. Следует понимать, что преимущество первой формы записи - только кажущееся: если при инициализации переменная b получит допустимое значение 255, то следующий оператор присваивания в краткой форме не выдаст ошибки, но даст неверный результат, а это - самое худшее, что может случиться в программе. Так что надежнее пользоваться полной формой записи присваивания, не экономя на паре символов.

Определенное присваивание

Присваивание в языке C# называется определенным присваиванием (definite assignment). В этом термине отражен тот уже обсуждавшийся факт, что все используемые в выражениях переменные должны быть ранее инициализированы и иметь определенные значения. Единственное, за чем компилятор не следит, так это за инициализацией переменных массива. Для них используется инициализация элементов, задаваемая по умолчанию. Приведу пример:

//определенное присваивание
int an =0 ; //переменные должны быть инициализированы
for (int i= 0;i<5;i++)
{an =i+1;}
x+=an; z+=an; y = an;
string[] ars = new string[3];
double[] ard = new double[3];
for (int i= 0;i<3;i++)
{
 //массивы могут быть без инициализации
 ard[i] += i+1;
 ars[i] += i.ToString()+1;
 Console.WriteLine("ard[" +i + "]=" +ard[i] +
 "; ars[" +i + "]=" +ars[i]);
}

Заметьте, в этом фрагменте переменная an обязана быть инициализированной, а массивы ard и ars не инициализируются и спокойно участвуют в вычислениях.

Еще раз о семантике присваивания

Подводя итоги рассмотрения присваивания x=e, следует отметить, что семантика присваивания далеко не столь проста, как может показаться с первого взгляда. Напомню, что деление типов на значимые и ссылочные приводит к двум семантикам присваивания. Будет ли семантика значимой или ссылочной - определяется типом левой части присваивания. Переменные значимых типов являются единоличными владельцами памяти, в которой хранятся их значения. При значимом присваивании память для хранения значений остается той же - меняются лишь сами значения, хранимые в ней. Переменные ссылочных типов (объекты) являются ссылками на реальные объекты динамической памяти. Ссылки могут разделять одну и ту же область памяти - ссылаться на один и тот же объект. Ссылочное присваивание - это операция над ссылками. В результате ссылочного присваивания ссылка начинает указывать на другой объект.

Рассмотрим объявления:

int x=3, y=5;
object obj1, obj2;

Здесь объявлены четыре сущности: две переменные значимого типа и две - объектного. Значимые переменные x и y проинициализированы и имеют значения, объектные переменные obj1 и obj2 являются пустыми ссылками со значением void. Рассмотрим присваивания:

obj1 = x; obj2 = y;

Эти присваивания ссылочные (из-за типа левой части), поэтому правая часть приводится к ссылочному типу. В результате неявного преобразования - операции boxing - в динамической памяти создаются два объекта, обертывающие соответственно значения переменных x и y. Сущности obj1 и obj2 получают значения ссылок на эти объекты.

Класс Math и его функции

Кроме переменных и констант, первичным материалом для построения выражений являются функции. Большинство их в проекте будут созданы самим программистом, но не обойтись и без встроенных функций. Умение работать в среде Visual Studio .Net предполагает знание встроенных возможностей этой среды, знание возможностей каркаса Framework .Net, пространств имен, доступных при программировании на языке C#, а также соответствующих встроенных классов и функций этих классов. Продолжим знакомство с возможностями, предоставляемыми пространством имен System. Мы уже познакомились с классом Convert этого пространства и частично с классом Console. Давайте рассмотрим еще один класс - класс Math, содержащий стандартные математические функции, без которых трудно обойтись при построении многих выражений. Этот класс содержит два статических поля, задающих константы E и PI, а также 23 статических метода. Методы задают:

  • тригонометрические функции - Sin, Cos, Tan;
  • обратные тригонометрические функции - ASin, ACos, ATan, ATan2 (sinx, cosx);
  • гиперболические функции - Tanh, Sinh, Cosh;
  • экспоненту и логарифмические функции - Exp, Log, Log10;
  • модуль, корень, знак - Abs, Sqrt, Sign;
  • функции округления - Ceiling, Floor, Round;
  • минимум, максимум, степень, остаток - Min, Max, Pow, IEEERemainder.

В особых пояснениях эти функции не нуждаются. Приведу пример:

/// <summary>
/// работа с функциями класса Math
/// </summary>
public void MathFunctions()
{
 double a, b,t,t0,dt,y;
 string NameFunction;
 Console.WriteLine("Введите имя F(t)исследуемой функции
 a*F(b*t)" + " (sin, cos, tan, cotan)");
 NameFunction = Console.ReadLine();
 Console.WriteLine("Введите параметр a (double)");
 a= double.Parse(Console.ReadLine());
 Console.WriteLine("Введите параметр b (double)");
 b= double.Parse(Console.ReadLine());
 Console.WriteLine("Введите начальное время t0(double)");
 t0= double.Parse(Console.ReadLine());
 const int points = 10;
 dt = 0.2;
 for(int i = 1; i<=points; i++)
 {
 t = t0 + (i-1)* dt;
 switch (NameFunction)
 {
 case ("sin"):
 y = a*Math.Sin(b*t);
 break;
 case ("cos"):
 y = a*Math.Cos(b*t);
 break;
 case ("tan"):
 y = a*Math.Tan(b*t);
 break;
 case ("cotan"):
 y = a/Math.Tan(b*t);
 break;
 case ("ln"):
 y = a*Math.Log(b*t);
 break;
 case ("tanh"):
 y = a*Math.Tanh(b*t);
 break;
 default:
 y=1;
 break;
 }//switch
 Console.WriteLine ("t = " + t + "; " + a +"*" + 
 NameFunction +"(" + b + "*t)= " + y + ";");
 }//for
 double u = 2.5, v = 1.5, p,w;
 p= Math.Pow(u,v);
 w = Math.IEEERemainder(u,v);
 Console.WriteLine ("u = " + u + "; v= " + v +
 "; power(u,v)= " + p + "; reminder(u,v)= " + w);
}//MathFunctions

Заметьте, в примерах программного кода я постепенно расширяю диапазон используемых средств. Часть из этих средств уже описана, а часть (например, оператор цикла for и оператор выбора switch) будут описаны позже. Те, у кого чтение примеров вызывает затруднение, смогут вернуться к ним при повторном чтении книги.

Коротко прокомментирую этот код. В данном примере пользователь определяет, какую функцию он хочет вычислить и при каких значениях ее параметров. Некоторые параметры задаются константами и инициализированными переменными, но для большинства их значения вводятся пользователем. Одна из целей этого фрагмента состоит в демонстрации консольного ввода данных разного типа, при котором используется описанный ранее метод Parse.

Функция, заданная пользователем, вычисляется в операторе switch. Здесь реализован выбор из 6 стандартных функций, входящих в джентльменский набор класса Math.

Вызов еще двух функций из класса Math содержится в двух последних строчках этой процедуры. На рис. 7.1 можно видеть результаты ее работы.

Результаты работы процедуры MathFunctions

Рис. 7.1.  Результаты работы процедуры MathFunctions

Класс Random и его функции

Умение генерировать случайные числа требуется во многих приложениях. Класс Random содержит все необходимые для этого средства. Класс Random имеет конструктор класса: для того, чтобы вызывать методы класса, нужно вначале создавать экземпляр класса. Этим Random отличается от класса Math, у которого все поля и методы - статические, что позволяет обойтись без создания экземпляров класса Math.

Как и всякий "настоящий" класс, класс Random является наследником класса Object, а, следовательно, имеет в своем составе и методы родителя. Рассмотрим только оригинальные методы класса Random со статусом public, необходимые для генерирования последовательностей случайных чисел. Класс имеет защищенные методы, знание которых полезно при необходимости создания собственных потомков класса Random, но этим мы заниматься не будем.

Начнем рассмотрение с конструктора класса. Он перегружен и имеет две реализации. Одна из них позволяет генерировать неповторяющиеся при каждом запуске серии случайных чисел. Начальный элемент такой серии строится на основе текущей даты и времени, что гарантирует уникальность серии. Этот конструктор вызывается без параметров. Он описан как public Random(). Другой конструктор с параметром - public Random (int) обеспечивает важную возможность генерирования повторяющейся серии случайных чисел. Параметр конструктора используется для построения начального элемента серии, поэтому при задании одного и того же значения параметра серия будет повторяться.

Перегруженный метод public int Next() при каждом вызове возвращает положительное целое, равномерно распределенное в некотором диапазоне. Диапазон задается параметрами метода. Три реализации метода отличаются набором параметров:

  • public int Next () - метод без параметров выдает целые положительные числа во всем положительном диапазоне типа int;
  • public int Next (int max) - выдает целые положительные числа в диапазоне [0,max];
  • public int Next (int min, int max) - выдает целые числа в диапазоне [min,max].

Метод public double NextDouble () имеет одну реализацию. При каждом вызове этого метода выдается новое случайное число, равномерно распределенное в интервале [0,1).

Еще один полезный метод класса Random позволяет при одном обращении получать целую серию случайных чисел. Метод имеет параметр - массив, который и будет заполнен случайными числами. Метод описан как public void NextBytes (byte[] buffer). Так как параметр buffer представляет массив байтов, то, естественно, генерированные случайные числа находятся в диапазоне [0, 255].

Приведу теперь пример работы со случайными числами. Как обычно, для проведения экспериментов по генерации случайных чисел я создал метод Rand в классе Testing. Вот программный код этого метода:

/// <summary>
/// Эксперименты с классом Random
/// </summary>
public void Rand()
{
 const int initRnd = 77;
 Random realRnd = new Random();
 Random repeatRnd = new Random(initRnd);
 // случайные числа в диапазоне [0,1)
 Console.WriteLine("случайные числа в диапазоне[0,1)");
 for(int i =1; i <= 5; i++)
 {
 Console.WriteLine("Число " + i + "= "
 + realRnd.NextDouble() );
 }
 // случайные числа в диапазоне[min,max]
 int min = -100, max=-10;
 Console.WriteLine("случайные числа в диапазоне [" + 
 min +"," + max + "]");
 for(int i =1; i <= 5; i++)
 {
 Console.WriteLine("Число " + i + "= "
 + realRnd.Next(min,max) );
 }
 // случайный массив байтов
 byte[] bar = new byte[10];
 repeatRnd.NextBytes(bar);
 Console.WriteLine("Массив случайных чисел в диапазоне 
 [0, 255]");
 for(int i =0; i < 10; i++)
 {
 Console.WriteLine("Число " + i + "= " +bar[i]);
 }
}//Rand

Приведу краткий комментарий к тексту программы. Вначале создаются два объекта класса Random. У этих объектов разные конструкторы. Объект с именем realRnd позволяет генерировать неповторяющиеся серии случайных чисел. Объект repeatRnd дает возможность повторить при необходимости серию. Метод NextDouble создает серию случайных чисел в диапазоне [0, 1). Вызываемый в цикле метод Next с двумя параметрами создает серию случайных отрицательных целых, равномерно распределенных в диапазоне [-100, -10]. Метод NextBytes объекта repeatRnd позволяет получить при одном вызове массив случайных чисел из диапазона [0, 255]. Результаты вывода можно увидеть на рис. 7.2.

Генерирование последовательностей случайных чисел в процедуре Rand

Рис. 7.2.  Генерирование последовательностей случайных чисел в процедуре Rand

На этом заканчивается рассмотрение темы выражений языка C#.

Поиск

Яндекс.Метрика